
J Math Chem (2008) 44:628–636
DOI 10.1007/s10910-008-9442-z

ORIGINAL PAPER

Molecular quantum similarity measures in Minkowski
metric vector semispaces

Ramon Carbó-Dorca

Received: 5 November 2005 / Accepted: 16 November 2007 / Published online: 4 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Minkowski metric vector semispaces can be chosen as the natural
mathematical framework, where quantum similarity measures are described and evalu-
ated. The obtained results in this study show that the Minkowski metric option is easily
feasible, providing a new set of computationally simpler expressions, computationally
faster when compared with Euclidian based quantum similarity measures.

Keywords Quantum similarity measures · Vector semispaces · Unit shell ·
Minkowski metric · General weighted Minkowski metric · Shape functions

1 Introduction

Quantum molecular similarity measures have been applied in many chemical fields
[1,2], since its first appearance in the literature [3] they have been mainly employed in
a computational structure provided with a metric based on Euclidian norms and scalar
products. The development of the quantum similarity theoretical background on the
other hand, has brought essentially to the definition and properties of semispaces [4]
within their natural Minkowski metric [5]. These findings had raised the expectative
to use such a metric in the quantum similarity field; thus some of the related questions
will be tentatively answered in a first instance within the present work.

This paper will be structured by the following scheme: First a short résumé about
semispaces and Minkowski metric will be given. Then, the cosine of the subtended
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angle will be studied using the construction of a pseudo-wave function attached to
a known density function. The overlap similarity measure between the density func-
tions of two systems will be studied afterwards, arriving to a simple algebraic form,
based on the overlap matrix between the basis functions of both systems. Finally, the
description of the triple density and Coulomb similarity measures are used as first
steps to obtain a general expression for this new kind of weighted Minkowski metric
quantum similarity measures.

2 Minkowski metric vector semispaces

A vector semispace (VSS) is a subset of any vector space, which is completely defined
over the positive real numbers [4], in such a manner that the additive group of the usual
vector space can be substituted in a VSS by a semigroup [5], a kind of group where no
reciprocal elements are allowed. Metric VSS can be naturally attached to Minkowski
norms [6].

A Minkowski norm is defined within a VSS in the following way:

(a) In infinite dimensional functional VSS, Minkowski norms are described by an
integral:

∀ f (t) ∈ V∞
(
R+) → 〈 f 〉 =

∫

D

f (t) dt,

(b) In finite dimensional column or row VSS, the Minkowski norm is simply evalu-
ated by summing up their elements, for example:

∀x = {xi } ∈ Vn
(
R+) → 〈x〉 =

∑

i

xi .

Metric VSS can be organized in shells [6]. A shell S (µ) is a set of vectors belonging
to a VSS whose Minkowski norms are coincident. Shells are constructed by taking
into account the Minkowski norms of their elements as follows:

∀x ∈ V
(
R+) : 〈x〉 = µ ∈ R+ → x ∈ S (µ) ⊂ V

(
R+)

.

Among the infinite set of shells in a VSS, the unit shell S (1) is most important, due
that it can be considered the VSS subset made of all probability distributions; also, an
element of any shell can be transformed into a unit shell one by a simple homothecy.
This property has been discussed recently in order to set the relationship and associated
properties between first order density functions and shape functions [7].

Scalar products in VSS shall be performed taking into account the square roots of
the involved vectors’ elements, in order they yield the Minkowski norm, when both
vectors appearing into the scalar product are the same. That is, it can be written:

〈 f |g〉 =
∫

D

( f (t) g (t))
1
2 dt ∧ 〈x|y〉 =

∑

i

(xi yi )
1
2
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for the two kinds of possible Minkowski norms in VSS as commented before.
In order to distinguish the Minkowski metric from the Euclidian one, the symbol

(a|b)will be used to write an Euclidian scalar product; for instance, if: a = {ai }∧b =
{bi }, are two n-tuple arrays, then the Euclidian scalar product symbol is computed as:
(a|b) = ∑

i ai bi .

3 Cosine of the subtended angle between two vectors in a Minkowski
metric VSS

The cosine of the subtended angle between two vectors in a Minkowski metric VSS
can, thus, be computed as in the usual vector algebra:

cos (α) = (〈x〉 〈y〉)− 1
2 〈x|y〉 ∧ x = y → cos (α) = 1,

because employing the previous Minkowski metric definitions: 〈x|x〉 = 〈x〉. Sup-
pose now that the following generating rules [4] are set for two vectors in a known
Minkowski metric VSS:

R (a → x) ∧ R (b → y) ,

meaning that:

x = a∗ ∗ a → ∀xi = |ai |2 ∧ y = b∗ ∗ b → ∀yi = |bi |2 ,

where an inward matrix product [8,9] is employed. This construction, if both gener-
ated VSS vectors are elements of the unit shell, implies that the generating vectors
are normalized in the Euclidean norm sense, and vice versa: whenever the generating
vectors are normalized in the Euclidian sense, the generated vectors belong to the unit
shell. The interesting fact in this circumstance is that, then, the cosine of the VSS
vectors and the one of their generators is the same, that is:

cos (α) = 〈x|y〉 =
∑

i

(xi yi )
1
2 =

∑

i

ai bi = (a|b ) ,

moreover, the cosine is coincident with the Minkowski product of the generated vectors
and the Euclidian product of the generating vectors.

4 Overlap quantum similarity measures

The equivalence between unit shell Minkowski metric and generating Euclidian scalar
products has the most important consequence in evaluating the, so-called, overlap sim-
ilarity measures (OSM) [10] and, thus, by extension the so-called Carbó index [11]
is obtained, involving infinite dimensional VSS made of quantum mechanical density
functions as elements.
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Indeed, suppose two density functions, scaled by the respective number of electrons,
that is, the so-called shape functions attached to a pair of molecular structures: {ρA, ρB},
the OSM according to a Minkowski metric can be written:

〈ρA|ρB〉 =
∫

D

(ρAρB)
1
2 dV .

On the other hand, it has been described that to any density function, ρ, a pseudo-wave
function, ψ , which generates it in the previous sense:

R (ψ → ρ) ≡ ρ (r) = ψ∗ (r) ∗ψ (r)

can be easily described [6,12] under some specific circumstances. To gain insight into
this generating process, suppose that for the molecule A, a MO description for the
density function is known and that a pseudo-wave function is constructed as:

ρA =
∑

i

ωA
i

∣∣
∣φA

i

∣∣
∣
2 ∧ ψA =

∑

i

(
ωA

i

) 1
2
φA

i → ρA = ψ∗
A∗ψA, (1)

also the same holds for molecule B. The signs of the square roots of the scaled MO

occupation numbers
{
ωA

i = N−1
A νA

i

}
are taken to be positive, in order to obviate the

undetermined signature of the pseudo-wave function [6–12], which acts as an unde-
termined phase factor. It must be now commented that this set up is a generalized one
in MO theory, as both the density expression and the attached pseudo-wave function,
conveniently written in a similar manner as in Eq. 1, can be taken as feasible formal
expressions valid up to any density function order [13]. This possibility will be deeply
studied elsewhere.

If the densities in systems A and B are normalized in the Minkowski sense, then
due to the property already studied, the cosine of the subtended angle between both
functions is written:

〈ρA|ρB〉 = (ψA |ψB ) =
∑

i

∑

j

(
ωA

i ω
B
j

) 1
2
∫

D

(
φA

i

)∗
φB

j dV, (2)

but, as in molecule A, for instance, the MO set
{
φA

i

}
within the LCAO theory can be

expressed as a superposition of atomic centered functions
{
χ A
µ

}
, then:

φA
i =

∑

µ

cA
µiχ

A
µ
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and the same holds for molecule B. Therefore, one can write the overlap between two
MO belonging to systems A and B as:

∫

D

(
φA

i

)∗
φB

j dV =
∑

µ

∑

ν

(
cA
µi

)∗
cB
ν j

∫

D

(
χ A
µ

)∗
χ B
ν dV = c+

A;i SABcB; j ,

with the overlap matrix between basis functions of systems A and B defined by:

SAB =
⎧
⎨

⎩
SAB;µν =

∫

D

(
χ A
µ

)∗
χ B
ν dV =

(
χ A
µ

∣∣
∣χ B
ν

)
⎫
⎬

⎭
,

and the MO coordinate coefficients are collected into the column vector: cA;i =
{

cA
µi

}

with a similar form for molecule B.
Consequently, the OSM conforming to a VSS Minkowski metric can be written as:

〈ρA|ρB〉 =
∑

i

∑

j

(
ωA

i ω
B
j

) 1
2
c+

A;i SABcB; j .

In order to evaluate the OSM above described in an efficient computational manner,
one can define the auxiliary column vectors, which are nothing else than the MO
coordinates scaled by the square root of the occupation numbers:

dA;i =
(
ωA

i

) 1
2

cA;i ,

and the same for molecule B. With the aid of the scaled MO coordinate vectors, the
following matrix:

TAB =
{

TAB;i j = d+
A;i SABdB; j

}

can be easily constructed. Finally, the Minkowski OSM is expressible as a complete
sum [13] of the elements of matrix TAB :

〈ρA|ρB〉 = 〈TAB〉 =
∑

i

∑

j

TAB;i j . (3)

The OSM obtained in this way still will depend on the relative positions of both
molecules, as the associated Euclidean expression is, see for example [2], but the
Minkowski MO algorithm is connected to integrals with a pair of orbital basis func-
tions only, instead of a four-function dependence as encountered in the usual Euclidean
representation [10]. A similar result has been described when comparing matrix rep-
resentations of density functions acting as operators [14].
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A comment about the form of the self-similarity measure, when computed in this
way may be interesting. Taking Eq. 2, the selfsimilarity measure for system A will
become the number of electrons:

〈ρA|ρA〉 = (ψA |ψA ) =
∑

i

∑

j

(
ωA

i ω
A
j

) 1
2
∫

D

(
φA

i

)∗
φA

j dV

=
∑

i

∑

j

(
ωA

i ω
A
j

) 1
2
δi j =

∑

i

ωA
i = NA.

For other kind of weighting operators than the unity, the intermolecular overlap matrix
shall be substituted by the corresponding matrix representation. Some examples will
be discussed next and a generalization proposal given at the end.

5 Triple density similarity measures

As a first example of the extension of Minkowski metric to similarity measures with
weighting operators, the operator associated to a third molecular structure C will be
considered, forming in this way the so-called triple density similarity measures [15].
The integral to be computed can be written within the weighted Minkowski metric
structure as:

〈ρA |ρC | ρB〉 =
∫

D1

∫

D2

(ρA (r1))
1
2 ρC (r1; r2) (ρB (r2))

1
2 dr1dr2

so, applying the same pseudo-wave function decomposition as in the OSM case, it can
be written:

〈ρA| ρC |ρB〉 = (ψA |ρC |ψB)

=
∑

i

∑

j

∑

k

[(
ωA

i ω
B
j

) 1
2
ωC

k

]
⎡

⎢
⎣

∫

D1

(
φA

i

)∗
φC

k dV1

⎤

⎥
⎦

×
⎡

⎢
⎣

∫

D2

(
φC

k

)∗
φB

j dV2

⎤

⎥
⎦

which, upon defining, in the same way as in the OSM case, the matrices {TAC ; TC B},
the Minkowski triple density measure can be finally written with the complete sum of
the product of the involved matrices:

〈ρA| ρC |ρB〉 = 〈TAC TC B〉 =
∑

i

∑

j

∑

k

TAC;ik TC B;k j .
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This result is computationally interesting, because there is not involved the superposi-
tion optimization of the three systems simultaneously, as it should be in the Euclidian
norm case, but one can just separately optimize the involved systems two by two
using an overlap expression of type (3); once every pair of molecules is optimally
superposed, then the optimal triple similarity measures can be immediately evaluated.

Here, the selfsimilarity implying that all the involved densities are the same provides
the sum of the scaled occupation numbers squared:

〈ρA| ρA |ρA〉 = (ψA |ρA|ψA)

=
∑

i

∑

j

∑

k

[(
ωA

i ω
A
j

) 1
2
ωA

k

]
δikδk j =

∑

k

(
ωA

k

)2
.

6 Coulomb operator weighted similarity measures

The triple density similarity measure studied above indicates how Coulomb operators
can act as weights in Minkowski metric OSM. That is, when computing the Coulomb
weighted similarity measure, as:

〈ρA| r−1
12 |ρB〉 =

∫

D1

∫

D2

(
ρA (r1) r−2

12 ρB (r2)
) 1

2
dr1dr2

= (ψA

∣∣∣r−1
12

∣∣∣ ψB) =
∫

D1

∫

D2

ψ∗
A (r1) r−1

12 ψB (r2)dr1dr2

then, the integral:
(
ψA

∣∣r−1
12

∣∣ψB

)
appears to be a Coulomb repulsion integral involving

two one-electron functions, which obviously can be associated to an overlap integral
with the Coulomb operator acting as a weight. Within the LCAO theory there will be
necessary to compute Coulomb integrals involving two basis functions only, obtaining
a new Minkowski metric weighted overlap matrix with the definition:

RAB =

⎧
⎪⎨

⎪⎩
RAB;µν =

∫

D1

∫

D2

(
χ A
µ (r1)

)∗
r−1

12 χ
B
ν (r2) dr1dr2 =

(
χ A
µ

∣∣∣r−1
12

∣∣∣χ B
ν

)
⎫
⎪⎬

⎪⎭
. (4)

Thus, employing the additional matrix:

QAB =
{

Q AB;i j = d+
A;i RABdB; j

}

one arrives to obtain the Coulomb operator weighted Minkowski OSM as the complete
sum:

〈ρA| r−1
12 |ρB〉 = 〈QAB〉 =

∑

i

∑

j

Q AB;i j .
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The necessary basic two-center two-function Coulomb integrals:
{(
χ A
µ

∣
∣∣r−1

12

∣
∣∣χ B

ν

)}
,

can be taken as simplified forms of the general four-center four-function repulsion
integrals. This can be easily seen, when inspecting old GTO integral expressions, like
the ones provided by Saunders [16], for example. Interesting enough, the matrix (4),
when associated to one molecular system only, has to behave as a Coulomb weighted
metric positive definite matrix.

7 General operator weighted Minkowski metric OSM

The previous results on triple density and Coulomb weighted Minkowski OSM, pre-
clude and made easy to write a general OMS weighted operator formalism within a
Minkowski metric VSS. It is only necessary to consider a positive definite operator,
which can be written in a module like form:

	(r1; r2) = |
(r1; r2)| ,

then the weighted OSM can be immediately evaluated as:

〈ρA|	 |ρB〉 =
∫

D1

∫

D2

(
ρA (r1) |
(r1; r2)|2 ρB (r2)

) 1
2
dr1dr2

= (ψA |	| ψB) =
∫

D1

∫

D2

ψ∗
A (r1)	 (r1; r2) ψB (r2)dr1dr2

so, as in the previous cases, a matrix representation over the basis functions shall be
considered to be computed. Therefore employing the following matrix expression:

ZAB =
{

Z AB;µν =
∫

D1

∫

D2

(
χ A
µ (r1)

)∗
	(r1; r2) χ

B
ν (r2) dr1dr2 =

(
χ A
µ |	|χ B

ν

)}

(5)

a new matrix can be constructed by using the scaled MO coordinate vectors:

AAB =
{

AAB;i j = d+
A;i ZABdB; j

}
,

in this way, the weighted Minkowski OSM can be written as the total sum:

〈ρA|	 |ρB〉 = 〈AAB〉 =
∑

i

∑

j

AAB;i j .

The weighted Minkowski metric OSM in this easy manner present a generalized
structure associated to positive definite operators. In the same manner as has been
commented when the Coulomb operator was studied, the matrix (5) will behave as a
positive definite metric matrix.
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8 Conclusions

The basic procedure described here constitutes a correct and generalized process to
compute quantum similarity measures within the LCAO MO theory, conforming to a
VSS Minkowski metric. The deducible algorithms in the present theory appear to be,
in general, computationally faster than the usual ones, appeared so far in the literature,
based on Euclidian metric.
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